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We heat and backlight FeMg foil using dynamic hohlraum and measure 
Fe opacity at Te=150-200 eV and ne=7-40x1021 cm-3

Te = 160 eV, ne = 7x1021 cm-3 Te = 195 eV, ne = 40x1021 cm-3

• How does the experiment work? 

• What do we know from measurements? 

• What do we know from simulations? 

• What are the limitations? 

J. E. Bailey et al Nature 517, 56 (2015).



Experiments



Z-pinch dynamic hohlraum

ZPDH opacity science platform satisfies challenging requirements 
for reliable opacity measurements

Requirements:

• Heat Fe to uniform conditions 
 Powerful ZPDH radiation

• Measure Fe conditions independently
 Mg K-shell spectroscopy

• Deal with Fe self-emission
 350 eV Planckian at stagnation

• Measure transmission spectra accurately
 Convex KAP spectrometer with x-ray films

Bailey et al PoP 2009
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Mg K-shell spectra are mixed in with the iron to 
determine the plasma conditions.

T. Nagayama et al, Phys. Plasmas 21, 056502 (2014).



Increasing the back-side tamper mass increases 
the sample temperature and density
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There is a strong anti-correlation between source-to-sample distance and 
inferred Te

T. Nagayama et al, Rev. Sci. Instrum. 85, 11D603 (2014).
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Measurements

• Te and ne of FeMg plasmas
• Source-to-sample distance
• Radiation characterization (old)

• XRD
• MLM

Will be discussed 
together with 
simulation
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Simulation bridges static-uniform picture of data and 
dynamic-gradient picture of reality
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Sample/tamper hydrodynamics
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Radiation transport
• PrismSPECT LTE emissivity and opacity database
• Numerically integrate radiation transport equation

• Gated ZPDH pinhole images
• Integrate over detector-observable area

• 1D Lagrangian hydrodynamics code (HELIOS)

• Gated ZPDH pinhole images
• 3D view factor code (VISRAD)

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Drive radiation is modeled with VISRAD using pinhole images 
calibrated with XRD power measurements

1. Calibrate pinhole images with XRD
2. Design concentric ZPDH source, 

sample, and surrounding gold 
components

3. VISRAD simulate radiation time 
history on sample

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Drive radiation is modeled with VISRAD using pinhole images 
calibrated with XRD power measurements

1. Calibrate pinhole images with XRD
2. Design concentric ZPDH source, 

sample, and surrounding gold 
components

3. VISRAD simulate radiation time 
history on sample

Limitations:

- Radiation of ZR is assumed to be a 
simple scale on the calibrated pinhole 
images

- Radiation is modeled at the center of 
the sample  Its lateral and axial 
variation is neglected.

- In reality, source is not a disk but a 3D 
plasma 

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Hydro-simulation Details:

 Free parameters: 

 Scale factor to match the measured sample temperature (C=x2.6)

 Drive onset to match the measured sample density (t0=-1.0ns)

 Fix the lower boundary of the sample

 Helios - 1D Lagrangian code 

 PROPACEOS for EOS and Opacity

 No inline geometrical dilution

 Disk for radiation source geometry

Same source and backlighter worked to simulate all experiments

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Te and ne inferred from simulation agree with measured ones

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Spectral images are simulated by taking into account 
instrumental geometry

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Spectral images are simulated by taking into account 
instrumental geometry
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Spectral images are simulated by taking into account 
instrumental geometry
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Spectral images are simulated by taking into account 
instrumental geometry

T. Nagayama et al, Phys. Rev. E 93, 023202 (2016).



Half-moon images are simulated by solving detailed 
radiation transport through the target gradient
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Mg K-shell Fe L-shell

Are the discrepancies caused by the time- and space-
integration effects?

1. Simulate our I,0 and I
• FeMg and CH emission/attenuation 

• Te(z,t), ne(z,t)

• Backlighter time history, B(t)

2. Analyze I,0 and I in the same way as the data
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Mg K-shell Fe L-shell
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Mg K-shell Fe L-shell
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Mg K-shell Fe L-shell

Are the discrepancies caused by the time- and space-
integration effects?
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Investigated concerns do not explain the observed 
discrepancies
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Self-emission effects, tamper effects, and time- and space-integration 
effects do not explain the observed discrepancies
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